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    Lectures 16-17 

We now turn to our first quantum mechanical problems that represent real, as 

opposed to idealized, systems.  These problems are the structures of atoms.  We will begin 

first with hydrogen-like atoms, atoms and ions that have only one electron.  This problem 

is of importance because the hydrogen-like atom has certain features that will be common 

to all atomic systems.  In addition, it is important because it is the last problem that we 

can solve exactly.  All other problems will involve both approximations and correction 

factors. 

As always, when beginning to consider a new quantum mechanical problem we 

need to write down the Hamiltonian.  The hydrogen-like atom is an atom with atomic 

number Z and one electron.  The charge on the nucleus is +Ze, where e is the magnitude 

of the charge of the electron, 1.602 x 10-19 C and the charge on the electron is -e.  The 

potential energy of attraction between the electron and the nucleus is given by the 

Coulomb potential, 

 V(r)=
-Ze

4 r

2

0
, 

where r is the distance between the electron and the nucleus, and 0 is the permittivity of 

free space.  The potential is negative to indicate that the interaction between the electron 

and the nucleus is attractive.  In addition, when we write the Hamiltonian for this problem, 

we will use the reduced mass,  


m m

m m
e n

e n

, for the mass of the system.  In this equation, 

mn is the mass of the nucleus and me is the electron mass.  Since the nucleus is orders of 

magnitude more massive than the electron, the reduced mass will be slightly less than the 

mass of an electron, 9.11 x 10-31 kg.  Thus our Hamiltonian for the hydrogen-like atom is 
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H Ze

r
   

2
2

2

02 4 
 

The Schrödinger equation for the hydrogen like atom will not be separable unless the 

Hamiltonian is expressed in one of a number of non-Cartesian coordinates.  (Write r as 

function of x, y, z and ask if separable.)  The simplest of these are spherical coordinates.  

This implies that our wavefunction will be a function of r,  and  so our Schrödinger 

equation becomes 

 (-
2

-
Z e

4 r
) (r, , )= E (r, , )

2
2

2
 

     
0

. 

Writing this out in full gives us 
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
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
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First, notice that all of the terms in this operator are terms involving only radii or angles.  

This suggests that we can apply separation of variables, and write  

 (r, , ) = R(r) f(, ). 

Second, notice that if we multiply through by
2

22r
, that the angular terms are identical 

to 
2

L
2 r


 2 , which was the Hamiltonian for the rigid rotor.  This suggests that f(, ) = 

Y ( , )l
m   , the spherical harmonics which were our solutions to the rigid rotor. 

If we now take (r, , ) = ( ) m
lR r Y ( , )  , and plug it into our Schrödinger 

equation, it results in the separation of our Schrödinger equation into an angular equation 

whose eigenfunctions are indeed the spherical harmonics, and a radial equation,  
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 (-
2 r

(
d

dr
( r

d

dr
)- l(l +1))-

Ze

4 r
)R(r)= ER(r)

2
2

 2

2

0

 

Notice that the angular momentum quantum number l is part of our radial Hamiltonian, so 

we expect that our solution R(r) will depend in part on l.  Just as the spherical harmonics 

will give us the angular probability distribution for finding the electron, the radial 

function R(r) will give us the probability distribution for finding the electron at 

various distances from the nucleus. 

When we solve the radial equation we obtain a set of functions called Laguerre 

polynomials, Rnl (r).  The first few Laguerre polynomials are  

0
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1/2
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0

( ) 2
Zr
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R r e

a


  

  
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3/ 2

21/ 2
21

0 0

24
Zr

aZ Zr
R e

a a


    

    
   

, 

where a0 is 52.918 pm, the radius of the first orbit of a Bohr hydrogen atom and is called 

the Bohr radius. 

Thus our solution for the hydrogen atom is a product of two functions,  

     nlm nl l
m(r, , ) R (r)Y ( , )  

One of these functions, the radial function, depends on two quantum numbers, n and l, 

while the other function depends on both l and m.  The overall wavefunctions are labeled 

with all three quantum numbers n, l, and m. 

The eigenvalues of hydrogen-like atoms are given by the equation 
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 E = -
e Z

2(4 ) nn 2




4 2

0
2 2

 

and thus depend only on the quantum number n, called the principle quantum number, 

which takes on any value from 1 to .  As usual the negative sign indicates that the electron 

is bound to the nucleus, i.e., the negative energy En is the energy it would take to remove 

an electron in state n completely from the hydrogen like atom.  This energy is called the 

binding energy, because it is the amount of energy necessary to ionize the atom.  Increasing 

the atomic number Z has the effect of increasing this binding energy.  For example, the 

binding energy of the hydrogen electron in its ground state is -13.605 eV, while the binding 

energy for the Li+2 electron in its electronic ground state is -122.4 eV.  To embellish this 

point with a rather absurd example, the binding energy in the ground electronic state of 

U+91 = -1.127 x 105 eV.  To perhaps put this on a more familiar basis for comparison, 1 eV 

= 96.5 kJ/mol. 

Notice also that the binding energy is reduced for a given atom as n increases.  

Again for a couple of examples, hydrogen in its ground n = 1 state has a binding energy of 

-13.605 eV, while in the n = 2 state the energy is -3.401 eV, and in the n = 3 state it is           

-1.512 eV.  These numbers show us that the stablest state of the atom is n = 1.  This stablest 

state is often referred to as the ground state. 

As we showed for the Bohr atom, these energies can account for the spectra of 

the hydrogen atom.  Absorption spectra arise when an electron is promoted from a state 

with n = n1 to a higher state n2, while emission spectra arise when an electron drops from 

an initial state with n = n1 to a lower state n2.  The photon energy is equal to the difference 

between the energies of these states, i.e., for absorption h = E2 - E1.  The wavenumber of 
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the absorption is related to the energy by E = hc , so for the hydrogen atom the 

wavenumber is given by  

  


=
1

hc
( E - E )

1

hc
(

e Z

2(4 )
(

1

n

1

n
)).

2 1n n 2  
4 2

0
2

2
2

1
2

 

If we calculate our reduced mass carefully, this equation will reproduce experimental 

measurements of hydrogen atom spectral lines to seven significant figures.  

It is important to realize that there are several eigenstates of hydrogen with the 

same energy for each n >1.  This is because even though the energies depend only on n, 

the eigenfunctions depend on n, l, and m.  The values of these quantum numbers are not 

independent but are interrelated.  As just stated, n can vary from 1 to .  l, the angular 

momentum quantum number, can take on only values from 0 to n-1, and m, the 

magnetic quantum number, can vary from -l to l.  Thus when n = 1, there is only one 

eigenfunction   100 10 0
0 R (r)Y ( , ),  while for n = 2, there are four,   200 20 0

0= R (r)Y ( , )

,   21 1 21 1
1


= R (r)Y ( , ) ,   210 21 1

0= R (r)Y ( , ) , and   211 21 1
1= R (r)Y ( , ).  Thus the 

degeneracy of n = 1 is one, for n = 2 the degeneracy is four and for a level with principle 

quantum number n the degeneracy is given by n2. 

What do these eigenfunctions look like?  It is important to realize that both the 

radial function and the angular function determine the probability density of the 

wavefunction.  Typically when the hydrogen atom is treated at the freshman level, only 

the angular portion of the wavefunction is considered.  We will look at both the angular 

and radial parts of the wavefunction, first separately and then together. 

Let's begin with a quick review of the angular parts.  The spherical harmonics are 

exactly the solutions we calculated for the rigid rotor.  When l = 0 and m = 0, the angular 
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solution is spherical, i.e., the angular probability distribution is completely uniform, and 

there are no angular nodes.  This is called an s orbital.  If l = 1, the distribution is a double 

bowling ball shape, with a single angular node and pointing along the x, y or z axis, and is 

called a p orbital.  The value of m indicates the direction in which the orbital is 

pointing.  If l = 2, a d orbital, the distribution is one of two shapes. [Draw] Here m indicates 

the direction in which the x shaped orbitals are pointing, and also determines the unique 

shape of the fifth orbital.  A d orbital has two angular nodes. 

Let's look at our radial functions, R (r)nl .  First let’s plot the radial probability 

density, R (r)R (r)r drnl nl
* 2 , for a series of s orbitals with increasing n. The r2 dr appears 

because when we convert from Cartesian coordinates to spherical coordinates, the volume 
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element dx dy dz becomes r2 sin  dr d d.  r2 dr is the differential element for r.  Notice 

two things that change with increasing n and the same value of l.  First the number of 

radial nodes increases with increasing n.  n= 1 has no radial nodes, n = 2 has one, n = 3 

has two, etc.  Second, notice that as n increases, the probability of finding the electron 

farther from the nucleus increases.  This should make sense since as n increases energy 

increases, and a greater energy allows the electron to overcome some of the coulomb 

attraction.  We can quantify this increase in radius by calculating the average radius 

between the nucleus and the electron, also called the expectation value of the radius.  HOW 

DO WE CALCULATE THE AVERAGE OF A QUANTUM MECHANICAL QUANTITY?  Thus  

* 2

0
( ) ( )nl nlr R r rR r r dr


   

WHY DIDN’T I INCLUDE THE ANGULAR PARTS?  If we use this to calculate the average radius 

for a 1s and 2s orbital we find that <r> for 1s is 3/2 a0, and <r> for the 2s orbital is 6a0, 

where a0 is the Bohr radius.  It is interesting to note that the Bohr radius corresponds to 

the most probable radius for the 1s orbital, but is smaller than the average radius of the 

orbital. 
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Now let’s plot the radial probability distribution for three states with the same 

principle quantum number but different values of l. Notice that as l increases the 

number of radial nodes decreases.  For R r30 ( ) , we have two radial nodes, R r31( ) has one 

radial node, and R r32 ( ) has no radial nodes.  So you see that the number of radial nodes 

depends on both n and l, with the 

formula, # nodes = n - l - 1.  In 

addition, we see that as l increases the 

probability of finding the electron at 

longer distances decreases slightly. 

This sequence of radial 

functions for n=3 leads to a natural 

question:  if the bulk of the electron 

density gets closer and closer to the 

nucleus as we go from 3s to 3p to 3d, 

why does the hydrogenic 3s orbital have 

the same energy as the 3d orbital?  The 

answer lies in the small amounts of 

probability density at the distances 

comparable to what we would see for 1s 

and 2s orbitals.  These small 

probabilities that are very close to the 

nucleus compensate for the slightly 

longer distance of the outermost lobe.  
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When we start considering multielectron atoms, these small probabilities will have a 

profound effect on the energies of the various atomic subshells. 

Let’s combine the radial and angular functions for 1s, 2s and 3s orbitals, and for 3s, 

3p and 3d orbitals.  The s orbitals are simple to treat.  Notice that we still have the same 

independence of electron position on the angle, but now as n increases there are radii at 

which there is no electron density.   

For the 3 different n = 3 orbitals note that while they all have the overall shapes that 

we expect for each type of orbital, the s and p orbitals are complicated by the presence of 

the radial nodes.  Notice something else which I find interesting - that the total number 

of nodes - angular + radial - is the same and equal to n - 1 for all of the orbitals with 

the same principle quantum number. 

Our solution to the Schrödinger equation for a hydrogen atom is 

nlm nl l
m= R (r)Y ( , )   .  If we operate on this wavefunction with the operator for the angular 

momentum squared, we see that this wavefunction is an eigenfunction of the angular 

momentum squared, with eigenvalue L2 = 2 l(l + 1).  Therefore the magnitudes of the 

angular momentum for different states of the hydrogen electron are given by (l(l+1))1/2.  

For this reason we call the quantum number l for an atomic electron the angular momentum 

quantum number.  For historical reasons it is also called the azimuthal quantum number, 

dating back to a time when Sommerfeld was trying to improve on Bohr’s model by positing 

an elliptical orbit for electrons in atoms.  We can show similarly that Lz, the component 

of the angular momentum in the z direction, is given by Lz = m.  For reasons that we 

will see shortly, m is often called the magnetic quantum number.  Thus the angular 
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momenta of the hydrogen atom are identical to those of the rigid rotor with the same 

quantum numbers l and m. 

The source of this angular 

momentum is the orbital motion of the 

electron around the nucleus.  Since l can 

vary from zero to infinity, a hydrogen atom 

can have any angular momentum from zero on 

up.  Note that this is the case even when the 

overall energy n is high, since every set of 

orbitals with a given value of n contains one 

with l = 0.  The m values, as in the case of the 

rigid rotator, give us the various orientations of 

the angular momentum vector with respect to 

the z-axis.  In other words, m tells us how 

closely the angular momentum is aligned with the z-axis.  Notice that positive values 

of m are aligned in the positive z direction, and that when m = 0, the angular 

momentum is perpendicular to the z-axis.  To reiterate our results from the rigid rotator, 

for each l there are 2l + 1 orientations of the angular momentum. 

If we don't include the effect of electron spin, which we will treat shortly, and in 

the absence of an external magnetic field, there is no observable associated with these 

various Lz states.  Remember that under these conditions, the energy, for example, depends 

only on the value of n.  However, in the presence of an external magnetic field, the 
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energy of the hydrogen atom depends on the value of m, with each m yielding a 

different total energy. 

Why is this?  We know from physics that any accelerating charge generates a 

magnetic field.  Remember that all objects moving in a circle are constantly accelerating, 

so if an electron is moving in a circle with any angular momentum at all it will 

generate a magnetic field in the direction of the angular momentum vector.  The larger 

the angular momentum, the larger this generated field will be.  The magnetic field 

generated by the orbital angular momentum of the electron will interact with the 

external field to raise or lower the energy of the electron.  The amount and sign of the 

energy change depends on the alignment of the two fields with respect to each other.   

The generated magnetic field is called the magnetic dipole moment of the electron 

and is given by  

  = eL, 

where e is called the gyromagnetic ratio of the electron and is equal to -
e

2me

, where e is 

the charge on the electron, and me is the mass of the electron.  The z component of the 

magnetic field is given by 

 z
e

z

e
B= -

e

2m
L = -(

e

2m
)m = - m, 

 

where B, the Bohr magneton, is equal to 
e

2me

= 9.724 x 10-24 J T-1.  It is introduced because 

all our z components of the magnetic moment will be some integral multiple of this 

number.  The potential energy of interaction between a magnetic dipole and a magnetic 

field is given by 
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 V' = -  B. 

Since by convention, the direction of an external field is taken to be the positive z direction, 

this simplifies to  

 V = B =
eB

2m
Lz

e
z  

If we want to find the energy of a hydrogen atom in the presence of the magnetic field, 

we have to add the quantum operator version of this potential to the Hamiltonian in 

the absence of the field.  The quantum mechanical operator for this potential is obtained by 

substituting the operator Lz  for Lz.  The new Hamiltonian now becomes 

 (0)ˆ ˆ ˆ
z

e

eB
H = H + L

2m
 

where  

 (0)

0

ˆ
22

2 ZeH = - -
2 4 r 


  

 and is the Hamiltonian in the absence of the magnetic field.  The Schrödinger equation 

which arises from this Hamiltonian,  

 (-
2m

- Ze
4 r

+
eB

2m
L ) (r, , )= E (r, , )

2
2

2

e
z





     

0

  

is too difficult to be solved directly but can be treated with relative ease by a method called 

perturbation theory.  We'll take a brief digression from the treatment of the angular 

momentum of the hydrogen atom to treat perturbation theory. 

The basic method of perturbation theory is to separate a Hamiltonian that is 

either too difficult to solve, or impossible to solve exactly, into two parts, one which 
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can be solved either easily or exactly, and one containing the rest of the terms in the 

Hamiltonian.  We write this as  

 0ˆ ˆ ˆ 'H H H  , 

where  0Ĥ , the unperturbed Hamiltonian, is the part of the Hamiltonian for which 

the Schrödinger equation can be solved exactly (and in fact is usually has been), while 

ˆ 'H , called the perturbation, is the remainder of the Hamiltonian.  Perturbation terms 

usually arise from two types of problems.  One is like ours, where the addition of an 

external field adds new terms to the Hamiltonian whose effects on the energy and 

wavefunction we need to calculate.  The other is a case where the problem that can be 

solved exactly is an oversimplification of a real physical problem, and the new terms serve 

the purpose of making the Hamiltonian more realistic.  An example of the latter would be 

a rotating molecule.  Our simplest model for a rotating molecule is the rigid rotor, which 

is a fairly good approximation, but is oversimplified because real molecules do not 

maintain a constant radius during rotation, but both vibrate continually and stretch as they 

rotate more and more.  The effects of the vibration of the bond and of the stretching of the 

bond on the rotational energies can be treated by perturbation theory. 

In our problem of a hydrogen atom in a magnetic field, the unperturbed 

Hamiltonian,  0Ĥ , is the Hamiltonian for the hydrogen atom in the absence of a field,  

  0

0

ˆ
22

2 ZeH = - -
2 4 r 


  

The perturbation is the potential energy of the magnetic dipole in a magnetic field, 

 'ˆ ˆ
z

e

eB
H = L

2m
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It is assumed that we already know the solutions to the Schrödinger equation associated 

with (0)Ĥ , which are the solutions of the equation 

        0 0 0 0Ĥ E   

where (0) is the unperturbed wavefunction, and E(0) is the unperturbed energy.  For 

example in our problem, the unperturbed wavefunctions are the eigenfunctions of the 

hydrogen atom,  

 (0) m
nlm nl l= R (r)Y ( , )   , 

 and our unperturbed eigenvalues are the hydrogen atom eigenvalues, 

 
4 2

(0)

2 2
0

n 2

e Z
E = -

2(4 n)


 

. 

Perturbation theory is based on the assumption that if the perturbation is 

small, then the eigenfunctions  of the complete Hamiltonian H , will be close to the 

wavefunctions (0) of the unperturbed Hamiltonian, and the eigenvalues E of the 

complete Hamiltonian will be close to the eigenvalues E(0) of the unperturbed 

Hamiltonian.  In other words, if ˆ 'H is a small correction to the Hamiltonian, and therefore 

(0)ˆ ˆ ˆ 'H H H   is close to (0)Ĥ , we can write our eigenfunction  as  0     , where 

 0  is our uncorrected eigenfunction, and  is a small correction, and we can write our 

eigenvalue E as  0E E E   , where E is our unperturbed energy and E is a small 

correction to the energy.  The Schrödinger Equation now becomes  

      0 0 0Ĥ( + )= (E + E)( + )      . 
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This method is only generally valid if E << E(0).  In cases where E is not much smaller 

than E(0) perturbation theory often works, although not in its simplest forms, but sometimes 

the results fail to converge to a solution at all.  

In general, the corrections E and  are calculated as an infinite series of 

increasingly smaller corrections, i.e., 

(1) (2) (3) ...         

and 

(1) (2) (3) ...E E E E     , 

where (1) and E(1) are called the first order corrections to the wavefunction and energy 

respectively, (2) and E(2) are the second order corrections and so on.  Since for many 

problems the size of the correction decreases drastically with order, i.e., the first order 

corrections are nearly equal to E or , we will treat the first order corrections only. 

The methods of obtaining the correction (1) are somewhat involved, but the 

correction E can be obtained rather simply, so we will treat this first.  We limit 

ourselves, both for the energy correction and the correction to the wavefunction, to the case 

in which our energy levels are non-degenerate.  After substituting    0 1ˆ ˆ ˆH H H   in our 

Schrödinger equation above, and going through some tedious calculations we obtain the 

following formula for the first order energy correction,  

    *0 0(1) 'ˆ
-

E = H d  



  

DOES ANYBODY RECOGNIZE THE RIGHT SIDE OF THIS EQUATION? The first order energy 

correction is just the expectation value or average of the perturbation.  This correction 

is a first approximation.  The approximation is based on assuming that certain terms that 
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we get in expanding the equation above are sufficiently small to be neglected.  If these so 

called second order (and higher order) terms are not too small to be neglected, then 

additional energy correction terms need to be calculated as well. 

 The treatment of the first order correction to the wavefunction, (1), is more 

complicated.  Once again we take advantage of the fact the set of solutions to the 

unperturbed wavefunction,  (0)
n , are a complete orthonormal set.  While the actual 

formula is somewhat more complicated, it essentially amounts to writing (1) as a linear 

combination of the zero order solutions  (0)
n .  The formula obtained after following this 

procedure is 

*(0) (0)

(1) (0)
(0) (0)

ˆ 'm n

n m
m n n m

H d

E E

  
 











 . 

In this equation, the symbol 
m n
 indicates that the sum is over all the unperturbed states 

except n.  Note that the effect of the term in the denominator, (0) (0)
n mE E , is to give 

greater weight to those states which are closest in energy to the state for which the 

perturbation correction is being calculated.  The term *(0) (0)ˆ 'm nH d  



 tells us how much 

the perturbation ˆ 'H  makes the unperturbed wavefunction (0)
n  like (0)

m .  The more the 

perturbation makes the two wavefunctions alike, the bigger (0) 'n s  contribution to (1)
n  

will be. 
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Let's do a simple example.  The first problem we solved in 

quantum mechanics was the particle in a box.  The potential was 

written as V = 0, 0  x  a; V =  elsewhere.  The Hamiltonian for 

this problem was given as H = -
2m

d
dx

2 2
2 , and the eigenfunctions 

were given by  
n

1/ 2= (
2

a
)

n x

a
sin , with energies E = n h

8man

2 2

2 .  

Suppose we change this slightly so that the bottom of the box is slightly slanted instead of 

flat.  In this case the potential between 0 and a is given by  

 V(x) = Ux /a. 

The Hamiltonian for this new problem is H = -
2m

d
dx

+
U

a
x

2 2
2 .  We can break this into an 

unperturbed Hamiltonian and a perturbation.  WHAT IS THE UNPERTURBED HAMILTONIAN?  

WHAT IS THE PERTURBATION? According to perturbation theory, the change in energy of 

our eigenvalues is given by  

  *0(1) ˆ
a

(0)(1)

0

E = dxH   

 
1/ 2 1/ 2

0

2 2
sin sin

2

a n x U n x U
x dx

a a a a a

        
     

This means that our total energy is E  E(0) + E(1) = 
2 2h n

8ma
+

U

22 .  Note that this result 

matches our qualitative interpretation of the energy correction being the average of the 

perturbation. 

 The correction to the wavefunction, (1), is given by,  
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(1) 0
2 2 2

2

sin sin

sin
( )
8

a

n
m n

m x Ux n x
dx

a a a m x

h n m a
ma

 








 , 

and the corrected wavefunction  is approximated by 

(0) (1)    . 

In conclusion, we see that first order perturbation theory is relatively easy to use. 

In fact, for the first order energy correction it requires no new techniques - just taking 

quantum mechanical averages, something we've already done more than once. 

If we apply perturbation theory to the H atom in a magnetic field, our energy 

correction is 

 ˆ*
znlm nlm B

e

eB
E = (r, , ) (r, , )d = mB.L2m

         

Our total energy is therefore E(0) + E and is equal to  

 nlm 2 BE = -
e Z

2(4 ) n
+ mB





4 2

0
2 2

 

We can draw the following conclusions.  First, each of the (2lmax -1 m) states in a given 

n shell will have a different energy in a magnetic field.  Second, the energy difference 

increases as the strength of the magnetic field increases.  A similar effect is responsible 

for the increased resolution with increasing field strength in NMR.  In addition, the 

magnetic dipoles that result from the orbital angular momentum of electrons are along with 

the magnetic moments due to electron spin, responsible for the magnetic susceptibilities of 

paramagnetic compounds, which some of you studied in Chem 317 lab.  The orbital angular 

momentum makes a far weaker contribution to the paramagnetism of compounds than the 

electron spin, but makes a measurable contribution. 
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Lecture 18 
 

We now turn to the helium atom, our first multielectron atom.  The helium atom 

consists of two electrons moving in the field of a nucleus with charge +2.  We call the 

distance between the nucleus and the first electron r1, between the nucleus and the second 

electron r2, and the distance between the two electrons r12.  As always, the Hamiltonian for 

this problem is the sum of the kinetic 

energy and potential energy operators, 

  H T +V.  Since we have two 

electrons in this problem our kinetic 

energy operator will have one term 

for each of them,  

T =
2m

( + )
2

e

1
2

2
2

   

The potential energy operator has 

three terms, the potentials of 

interaction between each electron and the nucleus and the repulsion between the two 

electrons,  

 V 1

4
(

2e

r

2e

r

e

r
)   

 0

2

1

2

2

2

12

, 

where 12 1 2r r r  .  Thus the overall Hamiltonian is 

 
2 2 2

0 1 2 12

ˆ
2

2 2
1 2

e

1 2e 2e e
H ( ) ( )

2m 4 r r r
       

  

The final term in the Hamiltonian, because of the term r12 in the denominator, prevents the 

Schrödinger equation from being separable, so we have to turn to approximation 
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methods to solve the Schrödinger equation for the helium atom.  While this is a 

problem to which perturbation theory has been applied, we will turn to a new 

approximation method called the variational method, which is more generally useful in 

determining wavefunctions for multielectron atoms than perturbation theory. 

The root of the variational method is the variational principle.  We will first define 

the variational principle.  Then we will show how this principle is incorporated into the 

variational method.  The variational principle can be developed as follows.  Consider the 

ground state for some arbitrary system for which we know the wavefunction 0 and the 

ground state energy E0.  The wavefunction and energy satisfy the Schrödinger equation 

 H0 = E0 0. 

If we multiply both sides of this equation by  0
*  and integrate over all space we get 

 *
0

ˆ *
00 0 0H d = dE       

Dividing by the integral on the right gives 

 
ˆ*

0 0
0*

0 0

H d
= E

d

 

 



 

Now suppose we use this equation to calculate the energy of some arbitrary function .  

The variational principal says that the energy of this arbitrary function  must be 

greater or equal to the energy E0 of the true ground state.  In other words, 

 
ˆ*

0*

H d
= .E E

d


 

 



 

This idea is sufficiently important that it bears repeating.  The variational principal 

says that the energy of any arbitrary function, calculated using this equation, will always 
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be greater than or equal to the energy of the ground state of the atom.  In general, when 

people are told the variational principle, it is greeted with intense disbelief.  However, it is 

not a postulate, but a derivable equation.  I don't think that showing you the derivation is 

the best use of our class time, but I'd be happy to show it to anyone who would like to see 

it outside of class. 

How do we use the variational principle in an approximation method?  As 

always, the first step is to write our Hamiltonian.  Second, we choose an arbitrary function, 

which we call a trial function, so that it depends on one or more arbitrary parameters, i.e.,  

  =  (, , , ...) 

where , , and  are the arbitrary parameters, and are called variational parameters.  

Now we calculate the energy E of our trial function.  This energy will also be a function 

of the arbitrary parameters,  

 E = E(, , ,...) 

The next step is to take the derivative of this energy with respect to the first of these 

parameters and set it equal to zero.  WHAT DO WE FIND OUT ABOUT A FUNCTION WHEN WE 

SET ITS DERIVATIVE EQUAL TO ZERO?  Solving for the zero of this derivative allows us to 

find the value of  which gives the lowest value of E.  We now repeat this for each of the 

parameters.  When we are done we have found the minimum value of E for this particular 

choice of trial function.  The variational principle tells us that this will be greater than or 

equal to the energy of the true ground state eigenfunction of our Hamiltonian.   

We can now modify our trial function and repeat the procedure.  If our new E is 

higher in energy than our old one we know that our new wavefunction is worse than the 

old one.  If our new E is lower in energy, we know that we have improved on the old one.  
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In any case we know that whatever energy we calculate will be greater than or equal to the 

true ground state energy. 

Care must be taken to choose a trial function that is consistent with the known 

properties of the system, or it will be difficult to gain any physical insight from the 

solution. 

Let’s look at an example of using the variational method.  For the sake of 

comparison let's apply it to a system where we already know the answer, the radial function 

of the hydrogen atom.  In the ground state l = 0 and the Hamiltonian operator is  

  H = -
2 r

d

dr
(r

d

dr
)- e

4 r
.

2 2
 2

2

0

 

Notice that we are only solving the radial equation.  This means we are assuming that the 

angular solutions to He will be the same as for H.  IS THIS A VALID ASSUMPTION?  WHY?  

When we choose our trial function we want to try to match it to something we know about 

the system.  We note that the Coulomb potential will tend to attract the electron to the 

nucleus, so we want a trial function which is high close to the nucleus, where r is small, 

and decreases at large r.  As a guess we choose a Gaussian function,  = e- r 2

.  [WHY 

COULDN’T WE USE 
re   , WHICH ALSO MATCHES OUR INITIAL INSIGHTS?] In this function 

 is our variational parameter.  The energy of this trial function is  

ˆ*

*

H d
( )=E

d


 


 



 

2 2

2 2

2
2 2

20

2

0

2
r r

r r

d d
e r e r dr

r dr dr

e e r dr

 

 


  

  

     
  






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When this integral is carried out, we find that 

   



 

E ( )=
3

2
- e

2

2 1/ 2

1/ 2
0

3/ 2

2

 

What we've done at this point is to obtain the energy as a function of .  Now we want to 

minimize this energy by taking its derivative with respect to  and setting it equal to zero.  

When we do this, we find out that the value of  for which the energy is minimized is 

  
 

=
e

18
.

4

4
0
2 3

 

Substituting this in our equation for E yields  

 

 

E = -.424
e

16

4

2
0
2 2

 

Considering the crudeness of our trial function, this compares well with our actual ground 

state hydrogen energy,  

 0E = -.500(
e

16
)


 

4

2
0
2 2

 

Note that as expected the energy of our trial function is higher than the actual ground state 

energy. 


